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Abstract—Tissue classification from electrical impedance spec-
troscopy has several applications in diagnosis, surgical planning,
and minimally invasive surgery. The method involves applying
an alternating current to the sample and measuring its electric
impedance at various frequencies. The spectrum is fit to a
equivalent electric circuit that mimics the shape of the tissue’s
impedance spectrum. The model parameters are then used for
classification.

This paper proposes a new solution to decompose the model
fitting problem into a form suitable for multi-objective optimi-
sation, from which all the non-dominated solutions are used to
form the database of parameters for a given tissue, as opposed to
a single solution that is typically seen in impedance spectroscopy.
The solution explores the use of the reference point dominance
condition within Non-dominated Sorting Genetic Algorithm II
to fit the data to the double dispersion Cole model. Each non-
dominated solution contain values for the dispersion model
elements. The multiple parameter value solutions from the
optimiser are used as features in a weighted Naı̈ve Bayes classifier
to identify a new tissue sample. Experiments results in 3 different
tissue samples shows that the method is successful in correctly
labelling the data with an average accuracy of 89%.

Index Terms—Electric Impedance Spectroscopy, Weighted
Naı̈ve Bayes Classifier, Multi-objective Optimisation

I. INTRODUCTION

Over the past few decades there has been increasing interest
in new technologies to aid in the discrimination of healthy,
benign and malignant tissues in cancer screenings. One such
technology that has been developing steadily is the method of
electric impedance spectroscopy. The method involves apply-
ing an alternating current across the sample and measuring the
resulting voltage, at a wide range of frequencies. This method
shows promise as it has been reported to observe differences
in the electric impedance of tissues; including healthy, benign
and malignant tissues in prostate [1], breast [2], bladder [3]
and skin [4].
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santé du Canada (IRSC), et par le Conseil de recherches en sciences humaines
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There have been many attempts at extracting information
from the impedance spectrum of a tissue to classify for
malignancy. Such analysis may involve fitting the measured
electric impedance to a model, and scrutinising the parameters
of the model [5] [6]. An intuitive approach would be to explore
a circuit comprised of an assortment of components that mimic
the shape of the tissue’s impedance spectrum. If the values for
the circuit elements were known for a variety of tissue, one
can attempt to classify a new tissue sample, with the circuit
parameters known, using methods such as Naı̈ve Bayes [7].

There is a long history detailing the development of such
equivalent circuit models, and such models are better suited
to different types of biological matter or for the range of
frequencies sampled. An equivalent circuit model deemed the
double dispersion Cole model, refer to Figure 1, has shown
promise of fitting several tissue types across a wide range of
frequencies [5].

There have been a few approaches to extracting the param-
eters of the double dispersion model from spectroscopy data.
Freeborn has utilised the trust-region-reflective method [6] and
Liu et al. have used modified particle swarm optimisation
to solve for these parameters [8]. The aforementioned have
explicitly only fit the model based on the magnitude data of the
impedance, claiming hardware and cost restrictions. Recently,
low cost devices have entered the market that are able to
measure the magnitude and phase of a tissue sample across a
wide range of frequencies [9]. Whereas in the single dispersion
Cole models, several papers have been published where one
considers both the real and imaginary parts of the impedance
in fitting the parameters [10], as opposed to working the realm
of magnitude and phase.

There are multiple ways to fit the measured electric
impedance to the double dispersion Cole model. The issue
seen across the deterministic methods is the convergence to
local minima traps; which stems, in part, from the selection
of the initial guess of the parameters. To overcome this,
stochastic methods could be employed, in which the landscape
of model parameter combinations are more widely explored.
However, the randomness of the method does not guarantee
convergence to the same set of parameters in a multi-modal
landscape. The challenge of classifying tissue based on the
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circuit parameters is made worse when an optimiser converges
to a set of parameters that do not match the recognised set in a
database. One could alter the initial parameters of these single
objective methods to provide variance in the training data-set
solutions, but the problem then becomes manipulated by the
lens of the programmer, and could lead to other problems such
as over-fitting.

If one were to consider a multi objective optimisation
algorithm, one could fit the magnitude and the phase to the
model concurrently. In addition this approach can also allow
for other additional cost functions to be used, such as the
desired location of cut-off frequencies for example. As seen
in many multi-objective problems, as the number of objectives
increases the problem becomes more challenging given that
the inverse problem is ill posed, i.e., there may be more than
a single combination of the circuit parameters that is able to
satisfy the optimisation problem. Therefore, there is a need
to address how to handle multiple solutions in this multi-
objective problem. Common optimisation algorithms like par-
ticle swarm and simulated annealing are better suited for
single objective functions, and are therefore not suited for this
application. The Non-dominated Sorting Genetic Algorithm
II (NSGA-II) is a well known optimisation method that can
handle multiple objective functions, and is explored here in
this application.

This paper proposes a new solution to establishing the train-
ing data-set of model parameters and classifying the tissue.
The suggested approach is to decompose the model fitting
problem into a form suitable for multi-objective optimisation,
from which all the non-dominated solutions are used to form
the database of parameters for a given tissue, as opposed
to a single solution and it is typically seen in impedance
spectroscopy. Each of these non-dominated solutions contain
values for the circuit model elements, and represent the Pareto
front from NSGA-II. When a new impedance sample is to be
tested, another set of potential solutions are obtained from its
spectrum. All solutions are then fed into a weighted Naı̈ve
Bayes classifier where, based on the training data, a predicted
label is given to each individual solution. The labels are
counted, and the label that occurs the most within the test
solutions is used to label the test sample.

The contributions in this paper are the decomposition of
electric impedance into magnitude and phase to be used in
a multi-objective optimisation approach for fitting the dou-
ble dispersion Cole model. The NSGA-II method is used
in conjunction with the reference point dominance (RPD)
condition to ensure a diverse set of possible solutions that
satisfy the objectives. A procedure is described on the handling
of multiple non-dominated solutions and how a new sample
is classified using these solutions through a weighted Naı̈ve
Bayes classifier.

II. EQUIVALENT CIRCUIT MODEL

As mentioned in the introduction, this paper utilises the
double dispersion Cole model, see Figure 1. The model has
been known to capture the resistive and psuedo-capacitive

R∞

1
C1s

α1

R1 R2

1
C2s

α2

Fig. 1. The double-dispersion Cole model, commonly used to fit
bioimpedance spectra. The model consists of resistors and constant phase
elements (CPE).

behaviour of biological tissues. Furthermore, it has shown to fit
tissue impedance well over a wide range of frequency [5] and
the additional number of parameters in the model, compared
to the more simple models, potentially yield more markers to
use when classifying tissue.

The impedance of the double dispersion model is

Z(ω) = R∞ +
R1

R1C1sα1 + 1
+

R2

R2C2sα2 + 1
(1)

where s = jω, with j =
√
−1 and ω as the frequency of

the excitation signal. The capacitive behaviour of the tissue is
represented by the constant phase elements (CPE), with C1

and C2. 0 ≤ α1,2 ≤ 1 are dimensionless coefficients. In the
event either α1,2 = 1 the CPE behaves like an ideal capacitor.

In this paper, the resistive nature of the tissue is represented
by R∞, R1, R2, where R∞ represents the magnitude of the
impedance as ω → ∞, R1 (in combination with the other
resistive elements) ensures the high magnitude impedance
as ω → 0, and R2 aids in the positioning of the cutoff
frequencies.

The impedance in (1) can then be converted into the
magnitude and phase as follows, refer to Table I,

Re
(
Z
)
− j Im

(
Z
)

= (z1 + z2)− j(z3 + z4) (2)

|Z(ω)| =
√

(z1 + z2)2 + (z3 + z4)2 (3)

∠Z(ω) =
180◦

π
arctan

(z3 + z4
z1 + z2

)
(4)

Let p ∈ R+ be the vector containing the 7 unknown model
parameters that form the double dispersion model,

p = [R∞, R1, R2, C1, C2, α1, α2] (5)

The goal is, for a given measured impedance spectrum, to find
the parameter values that would result in similar calculated
impedance from (1) to (4). Thus, one needs an optimisation
method that determines these parameter values such that the
calculated impedance matches the measured impedance at
various frequencies.

III. FITTING EIS DATA TO EQUIVALENT CIRCUIT

The purpose of the optimisation method is to minimise
the error between the measured impedance and the calculate
impedance of the model. As seen in (2), the impedance is
complex, and as a result many researchers approach this
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TABLE I
THE IMPEDANCE MODEL PARAMETERS FOR THE DOUBLE DISPERSION

MODEL WITH CPE AS DEFINED IN EQUATIONS (2) TO (4)

Var. Equation

z1 =
R∞+R1(R1C1e

a2 ln(w) cos(a2
π
2
)+1)

(R1C1e
a2 ln(w) cos(a2

π
2
)+1)2+R2

1C
2
1e

(a2∗ln(w))2 sin(a2
π
2
)2
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R2(R2C2e

a3 ln(w) cos(a3
π
2
)+1)

(R2C2e
a3 ln(w) cos(a3

π
2
)+1)2+R2

2C
2
2e

(a3 ln(w))2 sin(a3
π
2
)2

z3 =
R2

1C1e
a1 ln(w) sin(a1

π
2
)

(R1C1e
a1 ln(w) cos(a1

π
2
)+1)2+R2

1C
2
1e

(a1 ln(w))2 sin(a1
π
2
)2

z4 =
R2

2C2e
a2 ln(w) sin(a2

π
2
)

(R2C2e
a2 ln(w) cos(a2

π
2
)+1)2+R2

2C
2
2e

(a2 ln(w))2sin(a2
π
2
)2

problem using complex non-linear least squares methods. In
this paper however, a different approach is taken.

Consider that the electric impedance of the sample tissue is
measured at n frequencies. The impedance data is organised
into n×1 column vectors, containing the measured impedance
magnitude zm and phase zp separately. If the parameters of
the circuit p were known, then equations (3) and (4) both
form n × 1 column vectors as well, and yield the estimated
impedance magnitude ẑm and phase ẑp respectively.

There exists two desired tasks: to minimise the error in
the estimated and measured magnitude ẑm − zm, and phase
ẑp − zp, by only altering p. This can be formed into a multi-
objective problem as [11],

Minimise: F(p) = (f1(p), f2(p))
T
,p ∈ Ω

Subject to: gk(p) ≥ 0 k = 1 . . . P

hl(p) = 0 l = 1 . . . Q

where P and Q are the numbers of inequality and equality
constraints, respectively. Ω is the variable space for p as a
candidate solution. F houses the objective functions,

f1(p) = min
p∈R

(
ẑm(p)− zm

)
(6)

f2(p) = min
p∈R

(
ẑp(p)− zp

)
(7)

This may seem unintuitive to decompose the impedance prob-
lem, but this enables the problem to include more objective
functions in the future.

During optimisation with more than one objective, there is
not a guaranteed global solution that minimises all objective
functions. More often, there will be a set of solutions that
are nondominated, see Figure 2. The challenge that typically
comes with finding the multi-objective solutions is that, as the
number of objectives increase, the more likely the solutions
are to become nondominated, resulting in poor convergence
or representation of solutions. Thus, this paper includes the
approach presented by Elarbi et al. [11] to prevent this from
occurring.

The solution proposed in [11] is to define a set of evenly
distributed reference points across the hyperplane of the search
space [11]. These reference points are used to evaluate the
convergence and diversity of nearby candidate solutions. The
reference point set W is generated by,

W =

(
m+ v − 1

v

)
(8)

where m is the number of objective functions, and v is
the number of divisions along the objective. As previously
mentioned, the distance from the solution candidates to the
reference points are determined as,

d1(p) =

∥∥∥f̃(p)TRk

∥∥∥
‖Rk‖

(9)

d2(p) =

∥∥∥∥f̃(p)− d1(p)

(
Rk
‖Rk‖

)∥∥∥∥ (10)

with f̃(p) being the normalised objective function. Rk is an
M-dimensional direction vector [11].

The method selected to solve the multi-objective problem is
the wildly popular Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [12], but with the additional consideration of
reference point dominance (RPD) [11]. There are several
parameters the user needs to define within RPD-NSGA-II.
Namely, the number of reference points, the population size,
search space bounds and the crossover and mutation rates.
Generally speaking, increasing the number of reference points
will result in a better representation of the Pareto front, but at
the cost of increasing the number of computations per refer-
ence point, see (9) and (10). A population member in NSGA-II
is simply a combination of values for p. Increasing the size
of the population will enable exploring multiple solutions to
the multi-objective problem. Similar to the reference points,
increasing the size of the population increases the number of
computations significantly. The user must also define bounds
of the search space in each dimension. In other words, upper
and lower limits for each value within p. Lastly, as part of
NSGA-II, the population members undergo operations known
as crossover and mutation. These operations each require a
modifying value that is used in part to determine how the
population children for the generation of the optimiser are
created [13]. Selecting values for these rates will vary for
the application. An emphasis on mutation can help solutions
escape from local minima in multi-modal objective problems.

The method described above attempts to minimise both d1
and d2, which will ensure good convergence and diversity of
the potential solutions respectively.The RPD-NSGA-II algo-
rithm is well documented in [11], and the reader is directed
there for further reading.

IV. TISSUE CLASSIFICATION

The optimiser will produce a set of equivalent circuit model
parameters that best matches the impedance of the tissue at all
measured frequencies. It is desired to use these parameters as
features to determine what the tissue is. Due to the variability
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Fig. 2. Normalised fitness values for the population members after 50
generations of the optimisation method. Encircled members constitute the non-
dominated population, which are used to represent the final set of parameter
combinations for the sample.

in tissue samples and the stochastic nature of the optimiser,
it is not guaranteed that features represent the physical values
of the tissue, and will be identical from one sample to the
next. Furthermore, the relationship that exists between the
parameters and impedance may yield overlapping regions from
differing tissues.

Thus, when it comes to classifying the tissue based on these
parameter values a probability based approach is considered.
The Naı̈ve Bayes classifier is well suited for these types
of problems. One defines a set of features from the circuit
parameters p that belongs to a tissue type class c. The
probability of a test sample belonging to a class given a set
of features is defined as [14],

P (ck|pi) =
P (pi|ck)P (ck)

P (pi)
(11)

where pi denotes the ith parameter of p and ck refers to a
specific tissue type class. P (ck|pi) is then a probability density
function for a class given a feature, assuming a Gaussian
distribution. In essence, from this formula, one can determine
which class a given parameter will belong to based on which
has the largest probability [15], [16],

predicted label←− arg max
i=1...7

P (ck|pi) (12)

The combined probability density function for the set of
parameters is written as,

P (p|ck) =

7∏
i=1

P (pi|ck) (13)

the predicted label can be found by considering the highest
probability from multiple parameters,

predicted label←− arg max
i=1...7

P (ck)

7∏
i=1

P (pi|ck) (14)

While it is desirable to consider all of the model parameters,
some model parameters may be better markers for classifica-
tion. For example, R∞ may be distinct among the different
tissue samples, whereas values for α1 might be similar across
all tissues. For this reason, a weighted classifier is considered:

predicted label←− arg max
i=1...7

P (ck)

7∏
i=1

P (pi|ck)wi (15)

Electrode Probe

Gelatin PhantomsSpectroscopy Device

Fig. 3. The Quadra spectroscopy system was used with a bipolar electrode
embedded probe [18] to measure the electric impedance of gelatin phantoms.

where wi is the weight attributed to parameter pi [17]. Based
on a training set of parameter data, a new tissue sample can
be labelled based on the probability of it belonging to a type
of tissue with similar circuit parameters.

Assume one has taken impedance measurements for dif-
ferent tissue samples and has extracted multiple unique sets
of parameters p that satisfy the multi-objective optimisation
for each tissue, i.e., the Pareto-front solutions from the multi-
objective optimisation. Each individual set of parameters is
identified with their corresponding tissue type and sample
number and used in the classifier to determine the probability
density functions. This is the training data set.

With a new sample to be labelled, the optimisation will
again yield multiple sets of potential solutions p for it. Each
of these new sets of parameters is then classified individually,
using the training data described earlier, with the weighted
classifier. Once all solutions to the new sample have been
assigned predictive labels, the labels are tallied. The label with
the highest recurrence is then assigned to the test sample. A
flow chart of this process is presented in Figure 4.

V. EXPERIMENT SETUP

The proposed method for tissue classification is
experimentally tested to determine its efficacy. This section
describes the experimental validation setup and protocol.
Gelatin, with varying concentrations of salt, is used as
the tissue for the experiments. The following 3 recipes
are used: Tissue 1 (T1) has a ratio of 6.7 grams porcine
gelatin powder in 80 mL deionized water; Tissue 2 (T2)
has a ratio of 6.7 grams porcine gelatin powder in 80 mL
deionized water with 2.0 grams of ionized salt. A small
drop of green food colouring is used to tint the gel; and
Tissue 3 (T3) has a ratio of 6.7 grams porcine gelatin
powder in 80 mL deionized water with 5.0 grams of ionized
salt. A small drop of red food colouring is used to tint the gel.

To ensure variability in the data, 4 batches are made
separately for each phantom, where each batch yielded 4
samples. Thus, 16 phantoms are created for each tissue type,
which gives a total of 48 samples. The phantoms are separated
into two categories for the training data set and the test data
set. There are 4 samples of each tissue type set aside to form
the training data (12 total samples). This leaves 36 samples to
be used in the test data set, 12 samples of each tissue type. In
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TABLE II
PARAMETER INITIAL VALUE BOUNDS (TOP), AND OPTIMISER
PARAMETERS FOR TRAINING AND TESTING DATA (BOTTOM)

Var. Symbol Lower Bound Upper Bound

R∞ 1.0e0 2.0e3
R1 1.0e5 2.0e7
R2 1.0e0 2.0e3
C1 1.0e−9 1.0e−4
C2 1.0e−9 1.0e−4
α1 0.40 1.0
α2 0.40 1.0

Variable Symbol Training Test

Number of Objectives m 2 2
Dimension of Problem P 7 7
Population Size N 100 30
Crossover Rate pc 20 20
Mutation Rate pm 20 20
Number of Divisions v 20 20
Number of Generations 5000 2000

the figures and tables of this paper, the training data samples
are denoted TxSx, for brevity. For example, the second sample
of T3 is labelled as T3S2.

The experiment included measuring the electric impedance
of each phantom tissue sample with a spectroscopy system
(Quadra, Eliko, Tallin, Estonia) [9]. The electric impedance is
determined at n = 23 frequencies, spanning 10.4 Hz to 349
kHz, ω = [10.4, 20.8, 31.2, · · · 179000, 251000, 349000]>

Hz. The device presents the impedance as the magnitude and
phase (degrees) at each frequency (Hz).

Twelve gelatin samples are used as the training data for the
experiment. First, the magnitude and phase of the impedance
for each of the these samples is recorded. The double disper-
sion model parameters that fit the impedance for each tissue
were desired. The parameters are determined using the RPD-
NSGA-II method with the considerations shown in Table II.

For a given sample, N = 100 random combinations of
parameters p are generated using the bounds in Table II.
The initial parameters are chosen randomly, within reasonable
bounds, as to remove the dependency on being near a solution
that is typically required in the deterministic methods. The
reference point set is created with v = 20 divisions, linearly
spanning [1,0] to [0,1] in the normalised objective space. The
optimiser is run for 5000 generations using crossover and
mutation rates of pc = 20 and pm = 20 respectively [13].
The fitness function for each population member is detailed
in (6) (7). With the optimisation complete the Pareto front is
extracted, consisting of 100 combinations of parameters that
minimise the objective functions while being diverse due to
the RP diversity condition. This process is repeated for each
of tissue samples in the training data set. Examples of the
measured impedance and the calculated impedance from a set
of optimised parameters are shown in Figure 3.

The test data is created in a similar fashion to the training
data but with fewer population members and fewer genera-
tions, see Table II (top). The initial values for the model pa-
rameters in forming the test data are also randomly generated

R∞, R1, R2, C1, C2, α1, α2 : T1S1

T2S4
Predicted Label

T2S3

T3S1

Fig. 4. A flow diagram of the classification method with multiple solutions.
The left half of the figure depicts the formation of the training data-set.
Tissues (T1, T2, T3) each have multiple samples Sj that house the impedance
magnitude and phase spectrum. Using this spectrum, a set of 100 solutions p
are created. Each of these solutions contain values for the 7 double dispersion
model elements, as well as its supervisor assigned label. On the right side of
the figure, a new impedance sample Xt is to be tested to determine its label.
30 solutions for the parameters are determined and are fed into the weighted
Naı̈ve Bayes classifier where, based on the training data, a predicted label is
given to each test solution. The labels are counted, and the label that occurs
the most within the test solutions is used to label the test sample.

using the bounds in Table II (bottom). When the optimisation
for the each of the test samples is complete, each Pareto front
member is labelled based on the training data and classifier
described earlier in this paper. With each Pareto front solution
labelled, the occurrence of each label are counted. The label
with the largest number is then used as the label for the sample.
A flow chart summarising the proposed classification method
is shown in Figure 4.

The weights assigned to the classifier are selected as,
w = [4.40, 0.85, 0.10, 0.65, 0.85, 2.00, 1.85]. These values are
determined using the random-walk method described in [14]
and empirical testing with the training data.

VI. EXPERIMENT RESULTS AND DISCUSSION

With all of the test data classified, the results are compared
to the ground-truth. The comparison of the actual label against
the classified label is shown in Table 6. The classifier is able
to correctly identify T1 and T2 perfectly. While the majority
is correct, the classifier struggled in correctly labelling T3.
The total accuracy of test data was 89%. The optimisation of
the test data parameters and its classification was run multiple
times to account for the stochastic nature of the method. The
method is consistent in its accuracy, ranging from 86-92%.

The results indicate that the method is capable of cor-
rectly identifying the tissue when it has a distinctly different
impedance spectrum from other tissues. It is seen in Table
6 that the method struggled with classifying one of the tissue
types. Further analysis of the data reveals the same T3 samples
in the test are consistently mislabelled as T2S4 from the
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(a)

(b)

(c)

Fig. 5. Comparison of the measured impedance (dots) from the training data
set and the calculated impedance (line) from the double dispersion model
using one set of the optimised parameters. Magnitude and phase presented as
Ω and degrees respectively.

Tr
ue

C
la

ss

Predicted Class

T1 T2 T3

T1 1.00 0.00 0.00

T2 0.00 1.00 0.00

T3 0.00 0.33 0.67

Fig. 6. A confusion matrix representing the actual tissue and the classifier
label. Data is shown as percentages of 5 runs of the optimiser and classifier,
with the same 36 samples per run. Average correct accuracy is 89%, most
accurate run is 92%, least accurate run is 86%.

training data set. Interestingly, the average parameters of T2S4
are quite different from that of any of T3 samples, seen in
Table III. However, the standard deviation of R2 in T2S4 is
also abnormally large, which may have also contributed to this
issue. The root cause may stem from the impedance spectra
itself, the magnitude of the impedance is significantly greater
at all frequencies relative to correctly identified T3 samples.
Therefore these samples may have more similar impedance
to the T2 training data samples than the T3 samples. Lastly,
as shown in Figure 5, the phase for the T2S4 sample deviates
from the other samples at higher frequencies, which may have
also been a source of the over-representation.

From Table III it is evident that the most unique parameter
across the tissue types is R∞, which is correlated to the
magnitude of the impedance at higher frequencies. However,
should one simply classify the tissue based off of this infor-
mation alone they ignore the intricacies that happen along the
spectrum. It may be worthwhile to investigate a decision tree
based approach, where tissues are initially classified by the
high frequency magnitude, then further classified by additional
model parameters in the event of multiple possible labels.
Furthermore, additional metrics could be considered in the
classification process, such as cutoff frequencies.

The large deviation of R1, which in this application corre-
lates to the magnitude of the impedance at low frequencies, is a
result of limited information available regarding the impedance
at low (near DC) frequencies due to hardware limitations of
the spectroscopy device. As seen in Figures 5(a) and 5(c),
the magnitude of the impedance appears to have asymptotic
behaviour as the frequency approaches DC. If this were true
it would suggest open-circuit behaviour typically seen in
capacitive elements, thus R1 would effectively be removed
from the circuit model. Therefore, reliable information about
the impedance at low frequencies is critical in determining an
accurate value for R1.

Taking into account the importance of R∞ and the uncer-
tainty of R1, among the characteristics of the other parameters,
it is evident that the selection of the classifier weights is
crucial to its success. The random-walk method proved to yield
acceptable values for this application, but further refinement
of these weights may improve performance.

Furthermore, the properties of the optimiser including pop-
ulation size, number of generations, mutation and crossover
rates directly impact the performance of the method. While not
covered in the scope of this paper, one should be cognizant of
the impact altering these parameters will have on the accuracy
of the method.

To summarise the above, further development is needed
in the method to handle cases like T3, where classification
accuracy was low. Future work should focus on improvements
to the classifier or refinement of the model.

VII. CONCLUSION

This paper presented a novel method for extracting the
parameters from the double dispersion model using a multi-
objective technique, which are used to classify new samples.
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TABLE III
AVERAGE AND STANDARD DEVIATION OF PARAMETER VALUES FROM THE TRAINING DATA SAMPLES ACROSS ALL SOLUTIONS

Sample R∞ R1 R2 C1 C2 α1 α2

T1S1 1.0e3 ± 9.2e0 9.9e6 ± 1.4e6 1.0e3 ± 2.9e1 8.1e−6 ± 1.4e−7 1.0e−5 ± 9.2e−7 0.82 ± 5.3e−3 0.44 ± 8.0e−3
T1S2 8.8e2 ± 1.2e1 7.1e6 ± 1.6e6 6.0e2 ± 6.1e1 1.7e−5 ± 1.2e−6 1.0e−5 ± 1.5e−6 0.73 ± 1.7e−2 0.48 ± 1.0e−2
T1S3 1.1e3 ± 1.3e1 9.2e6 ± 1.2e6 8.8e2 ± 3.2e1 6.2e−6 ± 1.3e−6 5.3e−6 ± 5.9e−7 0.77 ± 3.7e−3 0.53 ± 1.1e−2
T1S4 1.0e3 ± 1.5e1 1.1e7 ± 1.5e6 7.5e2 ± 5.3e1 1.7e−5 ± 1.2e−7 1.5e−5 ± 1.7e−6 0.79 ± 2.5e−3 0.49 ± 1.2e−2

T2S1 1.3e3 ± 4.3e0 1.2e7 ± 1.5e6 7.1e2 ± 2.2e1 8.5e−7 ± 3.8e−7 3.2e−6 ± 2.7e−7 0.80 ± 6.8e−2 0.57 ± 7.3e−2
T2S2 9.8e2 ± 3.5e0 9.9e6 ± 1.8e6 4.1e2 ± 3.9e1 3.2e−5 ± 3.6e−6 3.0e−6 ± 4.2e−7 0.67 ± 2.7e−2 0.61 ± 1.5e−2
T2S3 1.3e3 ± 2.3e1 9.5e6 ± 1.1e6 3.3e2 ± 4.9e1 2.7e−5 ± 2.6e−6 7.7e−6 ± 5.8e−6 0.73 ± 1.9e−2 0.59 ± 3.1e−2
T2S4 1.1e3 ± 1.9e1 9.6e6 ± 1.5e6 3.9e2 ± 3.4e2 5.8e−5 ± 2.9e−5 7.7e−6 ± 7.9e−6 0.57 ± 6.5e−2 0.80 ± 1.4e−1

T3S1 2.4e1 ± 7.7e0 1.1e7 ± 8.8e5 1.9e3 ± 2.2e1 6.8e−5 ± 9.4e−7 1.8e−5 ± 1.9e−6 0.40 ± 1.4e−3 0.99 ± 3.1e−3
T3S2 3.8e1 ± 2.8e0 1.1e7 ± 1.1e6 2.7e2 ± 3.1e1 4.9e−5 ± 5.1e−6 4.2e−6 ± 1.3e−6 0.63 ± 2.6e−2 0.64 ± 2.0e−2
T3S3 3.7e1 ± 1.2e0 1.0e7 ± 2.6e6 1.4e2 ± 7.3e0 3.4e−5 ± 4.7e−6 2.3e−6 ± 3.9e−7 0.73 ± 2.3e−2 0.76 ± 1.5e−2
T3S4 3.0e1 ± 3.5e0 1.1e7 ± 9.6e5 1.5e2 ± 3.9e1 1.6e−5 ± 5.4e−6 6.4e−6 ± 6.0e−6 0.81 ± 6.1e−2 0.77 ± 1.0e−1

The optimisation method is implemented using NSGA-II with
the reference point dominance constraint, which yielded a di-
verse set of possible solutions that fit the measured impedance.

The method is successful in its classification, but struggled
with similar tissue samples. Further refinement of the tech-
nique is required and additional methods of classifying tissue
from equivalent circuit parameters should be investigated to
improve the algorithm. Nevertheless, the technique showcased
the ability to find multiple solutions that fit the double disper-
sion model without having to be near a solution, as seen in
the deterministic methods.

Lastly, while the method was executed multiple times to
confirm reputability, future development should consider a
larger data-set where cross validation can be performed.

With further development, this method may yet be useful
in the field of impedance spectroscopy, and by extension, aid
in the discrimination of healthy, benign and malignant tissues
during cancer screenings.
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